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Abstract 
Here, we extend the analysis of part I to determine the linear stability of a bubble in 

a Hele-Shaw cell analytically. Only the solution branch corresponding to largest possible 
bubble velocity U for given surface tension is found to be stable, while all the others are 
unstable, in accordance with earlier numerical results. 
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1. Mathematical formulation and regular perturbation for the modes 
Now we consider the problem of linear stability of a bubble for disturbances that 

are symmetric about the channel centerline. For the class of disturbances considered, 
the flux of fluid at infinity is assumed to be the same &B in the steady state. This is a 
realistic assumption for most experiments where the pressure gradient is held fixed. From 
incompressibility of fluid flow, the bubble area is time independent. Our formulation here 
is an extension of earlier method for the analytical determination of the zero surface tension 
symmetric stability modes as shown in section I11 of Tanveer & Saffman(l987). 

Without any loss of generality we set the channel half width a to unity and the fluid 
velocity at 00 , V to unity since this is equivalent to nondimensionalization of all relevant 
variables using combinations of these two quantities. In the frame of the steady bubble 
translating with constant velocity U , the pressure boundary condition on the bubble 
boundary is 

+ constant 
b2T 1 
12p R 

r$+ux=-- 

where the variables have the same physical meaning as the first part of the paper. The 
constant appearing on the right hand side of (1) can now depend on time. The kinematic 
boundary condition that a point on the bubble boundary moves along with the velocity of 
the fluid at that point can be expressed as 

(2) 4 X 2  + 4°F" + Ft = O on F(x, y, t) = o 
where F(x,y,t) = 0 determines the bubble boundary (x(t),y(t)) at time t . As for 
the steady problem (Tanveer, 1986), we consider the mapping function z(c, t) from the 
interior of the unit < semi-circle into the fluid flow region exterior of the bubble on one 
side of the channel centerline ( z  = x + iy ) such that c = f l  are mapped to the rear and 
front stagnation points on the bubble respectively; < = f& are mapped to z = TOO . 
The semi-circular arc corresponds to the bubble boundary, while the real diameter in the 

ti depends 
on time and has to be determined. In the linear stability problem, it is convenient to 
decompose 

-plane corresponds to the wall y = 1 and the channel centerline y = 0 . 

(3) & = a  + a1 
where a is time independent and is specified as a parameter characterizing the size of the 
steady bubble whose stability is being studied. It is convenient to decompose the mapping 
function into 

(4) 
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where j is some analytic function within the unit circle that has to be determined and 
zo is given by 

(5 )  

and k, is a constant given by 

(6) 

We find 

(7) 

where 

2a 
TU k, = - [U( l+  2) - 2 4  

dz 

d< 
- = k8( j ’  + v i )  

&[U( l+  2) - 2 2 1  
CY[U(l+ a2) - 2a2] ??= 

and the function is given by 

(9) 
~ U(1+ti2)  - 2  

U(1+ &2) - 2 2  
where p2 = i= (1 - YC2) 

(52 - 2) (1 - 2 < 2 )  

We decompose the complex velocity potential W 4 + i $J into 

where 

On substituting (10) and (5) into the dynamic boundary condition (1) on the bubble, we 
find that it is equivalent to 

on < = e;” where v is real and in the interval [0, 7r] and 

(13) 
b2T 

7 =  12pUk3 

as in the first part of the paper. Since for symmetric disturbances, the streamlines coincide 
both with the cell walls and the channel centerline, 

(14) I m w  = 0 
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on the real 5 diameter. The geometric condition that real 5 axis in the interval 
[-1,1] corresponds to the wall and the channel centerline is equivalnet to 

I m j  = o 

on the real < axis in [-1, 11. Since = 1 corresponds to the bubble boundary at all 
times, the kinematic boundary condition (2) is equivalent to the following equation on the 
unit < semi-circular arc (see Tanveer & Saffman (1987) for details) 

where * indicates complex conjugate and subscript t denotes time derivative. On 
substituting for z from (4) and W from (10) and using (11), one finds that (16) is 
equivalent to the following boundary condition on 5 = ei" u in the interval [0, 7r] : 

where in the above prime on quantitites w and f denotes derivatives with respect to 
and subscript T indicates derivative with respect to T , where r is scaled time given 

by 

For linear stability analysis, we decompose 

(19) f = f + F  

where f satisfies the steady state equations (1) and (2) in the first part of the paper. 
Assuming F and a1 small compared to f and a , linearization of (12) and (17) about 
the steady state gives us the following boundary conditions on = ei" : 

d F' + Hiai d F' + Hiai 
(20) 

7 {Re5z( f ' + h  ) - R e  [ l + c - Z n ( f ' + h )  de 
If' + hl 

Re (w+F)  = - 

where subscript a denotes derivative with respect to a. 
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and 

SaU(1 - 5 2 )  - 4 a  
U ( 1 +  a 2 ) ( 1 -  < 2 )  - 2(a2 - p )  

2 a  + + 
(23) 

( 1  - P2S2)  
( p  - a2)(1- a2p) 

HI = p - a2 1 - a252 

For 
(1) in Part I implies 

real in (-1, l ) ,  in addition to (14) substitution of (19) into (15)  and use of equation 

(24)  I m F  = O  

Equations (21) ,  (22), (14) and (24) are the linear stability equations determining the 
analytic functions w and F and the time dependent constant a1 . For purposes 

of analysis of these equations, it is convenient to define analytic functions k , k and 
? within the unit circle with continuity at the boundary such that on the real diameter 

(25)  I m k  = 0 

(26)  I m k  = 0 

(27) I m ? =  o 
and on < = ei" , 

(29) Re k = R e  [c*(h* + f")?] 
(30) R e  ? = R e  [<*f'*F] 

Each of k , k , ? so defined are analytic functions of < in 1st 5 1 because of smoothness 
of the right hand side of (28), (29) and (30) on < = eiv and from the application of 
Schwarz reflection principle for continuation to the lower half < semitircle. Substituting 
for h from (22)  into (20) and using the definitions of k , and f' it follows that on 
< = eiv 
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By subtracting off the simples poles of the expression within the square parantheses in 
(32) and adding on regular terms with the same real part, one finds that (32) is equivalent 
to 

I (33) R e g  = 0 

~ 

where 

(34) 

4 1  - as) (s + 4 ( 1 +  as) 
B = -sw'+ Fr (4 

( 1  - ,2<2)($2 - a2) 

~ 

Clearly I m  s = 0 for s real in [-1, 11 because of (14) ,  (24) ,  (26) and (27) .  Therefore, 
(33) implies that ,? = 0 for 5 1 and so 

Again the function within the parantheses on the left hand side of (31) is an anlaytic 
fucntion in 111 5 0 with vanishing imaginary part on real < axis in [-1,1] in view of 

~ 

(14) ,  (24)  and (25).  Thus for any with Is1 5 1 , 

Equations (35)  and (36) hold for any s with > 1 as well when one obtains proper 
analytic continuation of each of rc , k and defined originally in 5 1 . On 
substituting for w from (36) into (35) one obtains 

On evaluation of the above equation at 5 = 0 , we find that 

[&(a) - F4-41  + R ( 0 )  + k(O)a1, = 0 (a2 - P2) 
2 4 1  - a4) 

and this determines tyl . One can use (38) back into (37) to obtain 

(39)  

where 

k2 - P2> F, = Rs, + yrc"' F' + (1 - ,252) (52 - a2) 

6 



where 

We note that k(0) # 0 is a necessary condition for the above to be valid. This conditions 
is satisfied when 7 = 0 for in that case k = ko , where from (5),(22) and (29), ko is 
determined from the boundary condition 

on s = eiu and on the real diameter the imaginary part of vanishes. It is not 
difficult to see that 

ko(s) = 1 - 2 c2(s2 - $1 1 (a2 - P2) + rrrk, [ (52  - a2)(1 - a2s2) [-(s2 - a2) (1 - a2s2)(1 - cy2 P )  

(44) 

and so 
1 +"')+ 

a 2  - p2 1 - a 4  (1 - a4)2(1 - a2p2) 

which is clearly non zero. For small y , f is small and therefore one could argue that 
k(0) # 0 for sufficiciently small 7 . We will assume that is indeed the case. Now we 
assume that F has a cut time dependence then the mode corresponding to Q , we can 
try a regular perturbation expansion of the form 

(46) F =  FO(<,a,U,a) + yFl(s,Q,U,a), + 1.0 

where for convenience of regular perturbation expansion, U is being treated as a parameter 
together with a , though the steady state selection implies that U is a function of 7 and 
a! . Tanveer & Saffman (1987) calculated the eigenmode Fo . Using their procedure, it is 
straighforward though laborious to find the next term Fl and one finds no restriction on 
cr . We assume that this is indeed the case to every order in y . 
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2. Analytical continuation and reduction to an ODE 
We now proceed to extract the leading order transcendentally small terms by analytic 

continuation of the boundary conditions to the unphysical region 151 > 1 . The procedure 
is in principle very much like the first part of this paper. This illustrates the power of this 
formalism, which otherwise may appear rather complicated compared to the Combescot- 
Dombre analysis. The complication here compared to the first part of this paper is that 
we have two analytic functions f and w rather than one. We now proceed with the 
analytic continuation of the equations. Rather than work on the linearized set of equations 
just derived, it is convenient to analytically continue the full nonlinear equation and carry 
out the linearization at a later stage. 

We can write equation (12) as 

(47) 

where 5 is an analytic function in the unit semicircle defined by the boundary conditions 

and on the real diameter, 

Using Poisson's integral formula relating a harmonic function and its conjugate to the 
value of the harmonic function on it's boundary, by using the definition of , we find that 
(48) implies 

(50) 

where 

and 

-2  2 
(52) R(1) = v(1 - P 1 ) + (Sa - G2)(1 - h212)71(1) 

Analytic continuation outside the unit circle gives us 
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Now, we notice that the quantity within the paranthesis in (47) is an analytic function of 
s with simple poles at  s = f& and has vanishing imaginary parts on the real diameter. 
By subtracting off the simple poles and adding on terms with the same real parts on the 
unit circle, it is easy to conclude that (47) is equivalent to 

(54) 

Equation (54) is valid everywhere in the complex plane. For > 1 we must use 
the expression (53) rather than (50) for fj . Using the decomposition (3) and (19) and 
assuming that each of 01 , F and w are small, we expand to linear order to find 
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and 

(63) 

where 

] C 2 k 2  - P 2 )  L (5 ,a )  = {L+ a U ( 1 +  a 2 )  - 2a2 
2a(U - 2 )  

i 2Ua - 2 a ( U ( l +  a2) - 2)(U - 2 )  
U ( 1 +  a 2 )  - 2 a 2  ( U ( l +  a2) - 2a2)2 - 5 2  [ 

1 1 
5 

- 2 4 1  - a 2 5 2 ) f ' ( $  - 2 a 5 2 ( 5 2  - d ) f ' ( - )  

1 24U - 2) } (1 - p 2 5 2 )  
2 1 ( 5 , 4  = { -+  a! U(1+ a!2)  - 2a2 

1 2 a ( U ( 1 +  a2) - 2)(U - 2 )  
( U ( l +  a2) - 2 4 2  

- 2ua 
-52  { U ( l  + a2) - 2a2 

2 2  -2a(l - a2s2)f'(s) - 2as (s - a2)f1(c) 

Linearizing (54) and using (53) and subtracting off the steady state, we find 

L 1  F" + (Pi + Q 1 ) F '  + - (F + W )  = R2 
7 (66) 

where 

where 

where g is as defined in the first part of the paper and so from equation (20) of Part I, 

(69) 
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and 

and 

and 

The linearized kinematic boundary condition is given by (35). We need the analytic con- 
tinuation of each of ? and k outside the unit circle. For defined by (27) and (30), 
it follows from Posson's integral formula that for inside the unit circle 

For 1 1 1  > 1 , by contour deformation in the I' plane, we obtain the analytic continuation 
of (74) to be 

(75) r?. = w, p, c )  + [ w ) p ( d  S I  + cf ' (c)F(;)]  

We noted before that k = ko given by (44) when 7 = 0 , i.e. f = 0 . So from (26) 

and (29) and Poisson integral formula it follows that for 1 1 1  5 1 , 

(76) = iio + W,F,I) 

where 
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Since equations (35) and (66) do not involve time T explicitly, we now assume a modal 
form with a ear time dependence. We note that in (66) the right hand side R2 involves 
values of F and w either on the boundary of the unit circle or inside where correction 
to the regular perturbation expansion 

for w and the corresponding series for F (given by (46)) for F are transcendentally small. 
Thus one can replace F and w on the right hand side of (66) by its regular perturbation 
expansion. In our case, as far as obtaining leading order transcendental correction, it is 
only necessary to retain the zeroth order approximation F = Fo , w = wo in evaluating 
R2 . Similarly we can substitute the regular perturbation expansion for F and w in the 
integral term 1 3  and I 4 ( f ,  F, <) as well as for F(1/() and k given in (75) through 

(78). On carrying out this substitutions, (35) and (66) becomes a set of two ordinary 
differential equations for unknown modes F and w : Strictly speaking, we should use 
different notation for the modes since F and w were originally used to denote the general 
time dependent deviation from the steady state. However, from this point onward, we will 
only be talking about the modes and so in the interest of non- proliferation of symbols, we 
retain the same symbols for the modes. LFrom the two differential equations thus obtained 
from (35) and (66), we eliminate the variable F to obtain a single third order equation 
for w . 

I 
I 
I 

I 

where 

and 

where Rz , Rs , PI , Q1 and L1 are given by (67), (40), (68), (70) and (71) respectively. 
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3. Asymptotic solutions for small 7 
For small 7 ,  dominant balance involving terms with factor of $ must give w = wo . 

Carrying this out this out to higher and higher precision only generates the perturbation 
expansion (79). It is clear that transcendental terms in surface tension must be generated 
by looking at  the homogeneous part of (80) and trying a WKB approach. We find that 
the leading order transcendental correction away from the immediate neighborhood of the 
turning points ( = zkk must be linear combinations of 

(83) 

The above asymptotic expressions for two linearly independent solutions to the homoge- 
neous part of (80) simplify considerably, once we realize that the steady state function 
f - 7 f 1  away from the immediate neighborhood of the critical points as pointed out in 
Part 1. Using the expressions for f 1  , one finds that to the same order of approximation to 

which (83) is valid, the leading order transcendental correction are multiples of wH1 and 
wHl given by 

(84) 

where 

and 

a(1- a 2 p 2 )  
dl = 

4a( l  - a*) 

o(a2 - p2) 

4a( l  - a') 4 =  

as before in the case of the steady state. We notice the similarity of (84) with the expres- 
sions for 91 and 92 in part I (Equations 33,34). Each of W H ~  and WH, is transcendentally 
small or large depending on the sign of Re P where, as in part I, 

Thus the Stokes lines picture of part I of this paper is critically relevant in determining 
the nature of transcendental correction. Our work in the 1st part of this paper has shown 
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that steady solutions exist only when a2 - p2 > 0 . Further, we found that at  sufficiently 
small surface tension, U on any branch of solution approaches 2 from below and so in 
the limiting case of small 7 , one can assume that p2 is positive for fixed a . Thus only 
Fig. 1 in part I of the paper is relevant in the stability analysis in the limit of zero surface 
tension. 

On inclusion of the leading order transcendental correction, the leading order asymp 
totic behavior of w in sector I (see Fig. 1) is given by 

As mentioned in section 4 of Part I, Re P has a maximum value of -j1I2p in sector I. 
Thus in order that each of the multiples of and W H ~  be transcendentally small in 
all of sector I, it is necessary to have 

(91) c2 = O(1) 

In sector I1 

In order that the transcendental corrections in all of sector I1 be small it is necessary that 

c4 e-T-l/aPm - (93) - O(1) 

(94) c, = O(1) 

In sector 111, the leading order behavior is given by 

Note that it is not possible to have a multiple of wH1 in each of (95) since it grows without 
bounds at  < = -a inside the unit < semi-circle. In order that (95) be a transcendentally 
small correction everywhere in sector I11 of Fig.1, it is necessary that 

Now, we assume that a - p small with a of order unity, as assumed in Section 4b of 
part I of this paper. As before in part I, section 4b, we now introduce the local variables 
near < = - l / p  by defining 

(97) 1+a< = € 2 1  
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Then to the leading order in e , equation (80) transforms into 

where 

where 

and the function b ( x 1 )  is determined as described in section 4b of part I. For large 
2 1  with corresponding ( in sector I1 of Fig. 1, 

W(X1) - 2 1  
+ A l ( P ' ) X l  -s/a+~/(da) e-4,911/2 ( +  1 z1 314 3 +Az(Pl)sl -3/a+0/(4&) e 481 1/2 ( 1 + ~ 1 ) ~ / ~ / 3  ol(4a)- # (102) 

and this matches with the expression for w in (92) in sector I1 provided 

where R is defined as in section 4b, part I (Equation 83). 
For large x 1  with corresponding c in sector 111, 

u/(4a) - e + ( P I )  ,.. 3/8+0/  (la) e- 48' 'I' ( 1+ z 1) '/'/!I + ( p') z;3/8+o/ (4a) ,4/3' ' I2  ( l+ 2 1) 'I4 /3 
(104) 
w ( x 1 )  - Z l  

and this matches with (95) provided 

(105) A4 = 0 

and 
A ~ ~ P / ~ R  4 3 / 8 ~ u / ( ~ ) - 3 / 8 2 - 3 / 8 2 - u / 4 ~  

We now move to the immediate neighborhood of ( = 2 Introduce local variables 

- 4  ,-$ = ei3+a-3/4(1 

CS 
(106) 

(107) (1 - a() = €X2 
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where D 2 ( 5 2 )  is determined as described in section 4b of Part I. To the leading order in 
e , equation (80) becomes 

: 

For large values x2 , with corresponding c in sector 11, 

o/ (4a) (I+ za 'I4 /3 + A 6 ( B ) x 2  
-3/8-o/(h) -i4B'/2(l+z2)'/4/3 + A5 (3) 2 2  e 

ol(2a)- 
(110) 
4 x 2 )  - 5 2  

and this matches to behavior of solution given in (92) in sector I1 provided 

and this matches with (89) provided provided 

iFrom (94) and (103), it follows that A1 is transcendentally small compared to A2 since 
e7-'/apm is transcendentally small and much smaller that terms involvint p' since under 
the assumption made here, a! - p << 1 . Thus we can neglect A1 altogether. Then 
together with (105), this implies that we are interested in solution to.(99) so that for large 
z1 with corresponding < in sectors I1 and 111 in Fig. 1, the transcendental correction 
is small. This would determine a unique solution to (99), as will be shortly argued. As 
far as (log), we note from (93) and (111) that A6 is transcendentally small compared to 
Ab and will therefore be set to 0. This means that we should require that the solution to 
(109) contain no transcendentally large term for large x2 when the corresponding < is 
in sector 11. 

We now have to use the condition of smooth bubble back. When o is real, this would 
imply that the mode w ( < , u )  be real in some open interval containing c = 1 . From 
(80), it is clear that if u is real on such an open interval, then it must be real for in 
(a, l/a) as all the coefficients of the differential equation are real in that real < interval. 
This implies that the solution w ( x 2 ,  a) of (121) must be real on the postive real x2 axis. 
However, when a is complex, we cannot demand that each mode w ( x 2 ,  a )  should be 
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t 
! 

real on the real positive x2 axis. The condition of a smooth bubble back is equivalent to 
requiring that on the positive real x2 axis 

On formally taking the complex conjugate of equation (109) on the positive x2 axis and 
relating the corresponding solution to the condition (114), it is easily argued that the we 
must have the property 

U(XZ,U) = [w(x; ,  a*)]* (115) 

for any 5 2  not necessarily on the positive real axis. Thus the condition that for large 
x2 corresponding to f in sector 11, the solution to (109) does not contain any transcen- 
dentally large corrections implies from (115) that for large 5 2  with corresponding 5 in 
sector VI1 (which is a reflection of sector I1 in Fig. 1) also contain no trancendental large 
corrections. Indeed, this condition is equivalent to (115) since if we were to require that 
the asymptotic behavior for large ' x2  in sectors I1 and VI1 contain no transcendentally 
large terms, we will be assured that such solution will automatically satisfy the condition 
(114) and therefore (115) in view of the symmetries of (109). ' But the condition of no 
transcendentally large terms in two sectors will uniquely determine a solution to (109) as 
argued earlier for the steady problem in part 1. Note that in the special case when u is 
real, such a requirement is indeed equivalent to requiring that w ( z 2 )  be real on the real 
and positive 5 2  axis. The actual solution in (109) is not important as it is not needed 
for the leading order determination of the eigenvalue and the corresponding eigenmodes 
as the tip and the back problems decouple to the leading order. 

To ascertain that the tip of the bubble remains smooth under time dependent symmetric 
perturbation, we must require that W ( C , T )  as defined originally should be real in some 
open interval on the real axis containing -1. As before with the neighborhood of 

= +1 , it is easily argued from (80) that if indeed such an open interval exists then 

w(<, ~ r )  is analytic in the entire interval ( - l / a ,  -a) . However, the same is only true 
for each of the modes w ( f , u )  if u is real. Generally, for complex u , the condition of 
smooth tip is equivalent to 

4% 0) = [w(x1,  a')]' (116) 

on the positive real z1 axis, where w(zl, a) is the solution to (99) satisfying conditions 
in sectors I and I1 as mentioned earlier. It is easily argued that the condition (116) is 
equivalent to requiring that there exists solution to (99) with no transcendentally large 
term for large z1 with corresponding c in sectors I, 11, V and VI , where sec. t,ors V and 
VI are the reflections of sectors I and I1 on the part of the real 5 axis between a! and 

l/a! (see Fig. 1). From the figure, it is clear that this means that the solution to (99) 
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satisfying the smooth tip condition is equivalent to requiring that there be contain no 
transcendentally large term for large z1 in the entire interval (-T, ?r) . Note that such 
a requirement is also valid when u is purely real as can be seen by taking the complex 
conjugate of equation (99). 

We now relate the solution to (99) satisfying the above conditions to a problem which 
we already solved in the context of the linear stability of a finger (Tanveer, 1987~). We 
introduce the transformations 

Then equation (99) becomes 

dSw 1 3 -  d2w 3 1 dw .u ,&MS - + -(3 - -iP'MD) - + (1 - ?iPMD + i j t M s )  -- + t -  -w = 0 (120) 
dE3 € 2 dE2 c 2 d x i  CY E3 

where 

The requirement of no transcendentally small terms for argument of z1 in the interval 
[ - ? r , ~ ]  is equivalent to requiring that in the plane for large argument, there be no 
transcendentally small terms for argument of in the interval [ -T,  01 . This is precisely 
the problem that was encountered for the finger (Tanveer, 1987c) and numerical solutions 
were found for the cases when ,@ was of order unity. Only one branch of solutions for 
which a' was the smallest, i.e. U the largest was found to be stable and all the other 
branches unstable to tip breaking disturbances. Given the correspondence we have just 
established, the same must be true for the bubble. For large s) , ( 6 in the notation of 

the Tanveer paper), asymptotic expressions were found for Q and it was found that there 
were many unstable eigenvalues. 

In addition to what has been reported in the Tanveer (1987~) about the limiting values 
of u as 7 + 0 , we note that in the context of the finger eigen values u for which 
Re CJ < 0 is not physically acceptable since they correspond to singularities in the tail of 

the finger. In the case of the bubble, these modes physically correspond to disturbances 
affecting the sides and the back of the bubble, as seen before numerically (Tanveer & 
Saffman, 1987b). Using the procedure described before (Tanveer, 1987c), we found two 
nonzero pairs of discrete eigenvalues u = -1.65 f0.004i and u = -4.1060f0.11294i for 

the Mclean-Saffman branch. 
4. Discussions and Conclusions 
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Here in this part of the paper, we have demonstrated how the calculation of transcen- 
dentally small terms in surface tension is crucial in the proper prediction of eigen values 
and corresponding eigenmodes for the linear stability of a bubble. We have shown that 
only one branch of bubble solutions is stable, while all the others are unstable, a result 
supported by earlier analytical and numerical work on the finger. The next step will be 
to calculate modal interactions in for calculation of non-linear interactions. It is to be 
pointed out that in this problem, the calculation of stability and the modal interactions in 
an analytical procedure is very important since all the usual numerical procedures break 
down because of inherent ill posedness of the time evolution problem as surface tension 
tends to zero. 
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